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1 Fourier

1.1 Harmonics

• y = A1 sin (x) is the first/fundemental harmonic

• y = An sin (nx)is the n
th harmonic

1.2 Periodic Function

A function is periodic if:

f (x+ P ) = f (x) , where P = period (1.1)

1.3 Fourier Series

1.3.1 Arbitrary Period, 2L: (−L ≤ x ≤ L)

Fourier series, f (x):

f (x) =
a0
2

+
∞∑
n=1

{
an cos

(nπx
L

)
+ bn sin

(nπx
L

)}
(1.2)

Constant a0:

a0 =
1

L

ˆ L

−L

f (x) dx (1.3)

Constant an:

an =
1

L

ˆ L

−L

f (x) cos
(nπx
L

)
dx (1.4)

Constant bn:

bn =
1

L

ˆ L

−L

f (x) sin
(nπx
L

)
dx (1.5)

1.3.2 Period, 2π: (−π ≤ x ≤ π)

Fourier series, f (x):

f (x) =
a0
2

+
∞∑
n=1

{an cos (nx) + bn sin (nx)} (1.6)

Constant a0:

a0 =
1

π

ˆ π

−π

f (x) dx (1.7)

Constant an:

an =
1

π

ˆ π

−π

f (x) cos (nx) dx (1.8)

Constant bn:

bn =
1

π

ˆ π

−π

f (x) sin (nx) dx (1.9)
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1.3.3 Period, T :
(
−T

2
≤ x ≤ T

2

)
Angular velocity, ω:

ω =
2π

T
and T =

2π

ω
(1.10)

Fourier series, f (t):

f (t) =
a0
2

+
∞∑
n=1

{an cos (nωt) + bn sin (nωt)} (1.11)

=
a0
2

+
∞∑
n=1

{
an cos

(
2nπt

T

)
+ bn sin

(
2nπt

T

)}
(1.12)

Constant a0:

a0 =
4

T

ˆ T/2

0

f (t) dt or =
2ω

π

ˆ 2π/ω

0

f (t) dt (1.13)

Constant an:

an =
4

T

ˆ T/2

0

f (t) cos (nωt) dt (1.14)

=
2ω

π

ˆ 2π/ω

0

f (t) cos (nωt) dt

Constant bn:

bn =
4

T

ˆ T

0

f (t) sin (nωt) dt (1.15)

=
2ω

π

ˆ 2π/ω

0

f (t) sin (nωt) dt

1.4 Dirichlet Conditions

Fourier series expansion of f (x) converges to:

a) f (α) , if x = a is a point of continuity

b)
1

2

[
lim

x→α−
f (x) + lim

x→α+
f (x)

]
, if x = α is a point of finite discontinuity.

• If Dirichlet’s conditions are satisfied, convergence of Fourier series to f (x) is guaran-
teed.

• However, it is sufficient but not necessary for convergence.

• Fourier series converges to the mid-point of jump:

lim
x→α−

f (x) = ℓ1, lim
x→α+

f (x) = ℓ2,
1

2
(ℓ1 + ℓ2) (1.16)
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1.5 Odd Even Functions

Even function: f (−x) = f (x) ; symmetrical about y-axis.

Odd function: f (−x) = −f (x) ; symmetrical about origin.

1.5.1 Product of Odd and Even Function

(even)× (even) = (even) , (odd)× (odd) = (even) , (odd)× (even) = (odd) (1.17)

1.5.2 Sine Series and Cosine Series

We can simplify calculation of Fourier Series by considering whether it is even or odd:

1. If f (x) = even, the series contains cosine terms only :

a0 =
2

π

ˆ π

0

f (x) dx, an =
2

π

ˆ π

0

f (x) cos (nx) dx, bn = 0 (1.18)

2. If f (x) = odd, the series contains sine terms only :

a0 = 0, an = 0, bn =
2

π

ˆ π

0

f (x) sin (nx) dx (1.19)

1.6 Half-Range Series

For a function with period = 2π and defined only in the range of 0 < T < π. We can
consider it to be half of an even function or odd function.

1.6.1 Period, T

1. Even function: Half-Range Cosine Series

a0 =
4

T

ˆ T/2

0

f (t) dt, an =
4

T

ˆ T/2

0

f (t) cos (nωt) dt, bn = 0 (1.20)

2. Odd function: Half-Range Sine Series

a0 = 0, an = 0, bn =
4

T

ˆ T/2

0

f (t) sin (nωt) dt (1.21)

1.6.2 Series Containing only Odd or Even Harmonics

1. If f (x) = f (x+ π), then Fourier Series only contains even harmonics.

f (x) = f (x+ π) =
a0
2
+{a2 cos (2x) + a4 cos (4x) + ...}+{b2 sin (2x) + b4 sin (4x) + ...}

(1.22)

2. If f (x) = −f (x+ π), then Fourier Series only contains odd harmonics.

f (x) = −f (x+ π) = {a1 cos (x) + a3 cos (3x) + ...}+ {b1 sin (x) + b3 sin (3x) + ...}
(1.23)
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1.7 Complex Fourier Series

Euler’s Formula:
eiθ = cos (θ) + i sin (θ) (1.24)

Common identities:

cos (θ) =
eiθ + e−iθ

2
, sin (θ) =

eiθ − e−iθ

2i
(1.25)

1.7.1 Sinc Function

Sinc function:

sinc (x) =
sinx

x
(1.26)

L’Hopital of sinc (x):

lim
x→0

d

dx

[
sin (x)

x

]
= lim

x→0

cos (x)

1
= 1 (1.27)

1.7.2 Period, T

Complex Fourier Series, f (t):

f (t) =
a0
2

+
∞∑
n=1

{(
an − ibn

2

)
einω0t ·

(
an + ibn

2

)
e−inω0t

}
= c0 +

∞∑
n=1

{
cne

inω0t · c∗ne−inω0t
}

Simplified f (t):

f (t) =
∞∑

n=−∞

cne
inω0t (1.28)

Coefficient cn (where cn ∈ C):

cn =
1

T

ˆ T/2

−T/2

f (t) e−inωotdt (1.29)

1.7.3 Complex Spectra

In general, cn can be written as:
cn = |cn| eiϕn (1.30)

• These complex coefficients constitute a discrete complex spectrum.

• cn represents the spectral coefficient of the nth harmonic.

• |cn| represents an amplitude spectrum which tells us the magnitude each the har-
monic has.

• ϕn is the phase spectrum which tells us the phase of each harmonic relative to the
fundamental harmonic frequency ω0.

7
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t

|cn|

|cn| = | sinc (x) |

πa
T

(a) Amplitude Spectrum, |cn|

n

ϕn

ϕn = −nπa/T−1−2−3

1 2 3

(b) Phase Spectrum, ϕn

Figure 1.1: Amplitude and Phase Spectrum [different shapes for each function f (x)]

1.7.4 The Two Domains

• Waveform is described in terms of behaviour in time, t.

• Spectrum is described in terms of behaviour relative to frequency, ω = 2πf .

• Since t and ω form two domains of definition of our function, any information from
one domain can be equally obtained within the other.

• For example, power content of periodic function f (t) of period T defined in the time
domain and frequency domain respectively:

1

T

ˆ T/2

−T/2

(f (t))2 dt and
∞∑

n=−∞

|cn|2 (1.31)

1.7.5 Continuous Spectra

• In Fourier series, distance between neighbouring harmonics in complex spectra is the
fundamental frequency ω0 =

2π
T
.

• As T → ∞, so ω0 → 0. Means as the period increase, the space between lines in the
spectrum decrease and eventually merge into a continuous spectrum. So, for large T :

nω0 ≈ nδω, and as T → ∞ ⇒ nδω → ω (1.32)

where ω = continuous frequency variable

t

f (t)

−T
2

T
2

A

(a) Discrete time function, f (t)

ω

F (ω)

ωT
2

A · T

(b) Continuous amplitude spectrum, F (ω)

Figure 1.2: Discrete and continuous spectrum [different shapes for each function f (t)]

Using this result, we can derive the Fourier Transform equation.

8
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1.8 Fourier Transform

1.8.1 Fourier’s Integral Theorem

Given function f (t) with derivatives f ′ (t) where

1. f (t) and f ′ (t) are piecewise continuous in every finite interval.

2. f (t) is absolutely integrable in (∞,−∞), that is

ˆ ∞

−∞
|f (t)| dt <∞ (finite).

Fourier Transform, F (ω):

F (ω) =
1√
2π

ˆ ∞

−∞
f (t) e−iwtdt (1.33)

Inverse Fourier Transform, f (ω):

f (t) =
1√
2π

ˆ ∞

−∞
F (ω) eiωtdω (1.34)

1.8.2 Properties of Fourier Transform

1. Linearity

F [α1f1 (t) + α2f2 (t)] = α1F [f1 (t)] + α2F [f2 (t)] (1.35)

where α1, α2 = any constants

2. Time Shifting

If F [f (t)] = F (ω), then:
F [f (t− t0)] = eiωt0F (w) (1.36)

3. Frequency Shifting

If F [f (t)] = F (ω), then:
F

[
f (t) eiω0t

]
= F (ω − ω0) (1.37)

4. Time Scaling

If F [f (t)] = F (ω), then:

F [f (kt)] =
1

|k|
F
(ω
k

)
(1.38)

5. Symmetry

If F [f (t)] = F (ω), then:
F [F (t)] = f (−ω) (1.39)

9
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6. Differentiation

If f (t) → 0 as t→ ±∞ and if F [f (t)] = F (ω), then:

F [f ′ (t)] = iωF (ω)

More generally:
F

[
f (n) (t)

]
= (iω)nF (ω) (1.40)

1.8.3 Alternative Forms of Fourier Transform

Alternate form 1:

f (t) =

ˆ ∞

−∞
F (ω) eiωtdω

F (ω) =
1

2π

ˆ ∞

−∞
f (t) e−iωtdt (1.41)

Alternate form 2:

f (t) =
1

2π

ˆ ∞

−∞
F (ω) eiωtdω

F (ω) =

ˆ ∞

−∞
f (t) e−iωtdt (1.42)

Alternate form 3:

f (t) =

ˆ ∞

−∞
F (ω) ei2πωtdω

F (ω) =

ˆ ∞

−∞
f (t) e−i2πωtdt (1.43)

1.9 Special Transforms

1.9.1 Odd, Even, Sine and Cosine

If f (t) is odd or even, can use Fs and Fc respectively. Notice that values of odd & Fs and
even & Fc are C and R respectively.

Odd functions:

F (ω) = −i
√

2

π

ˆ ∞

0

f (t) sin (ωt) dt (1.44)

Even functions:

F (ω) =

√
2

π

ˆ ∞

0

f (t) cos (ωt) dt (1.45)

Fourier Sine Transform Fs:

Fs (ω) =

√
2

π

ˆ ∞

0

f (t) sin (ωt) dt (1.46)

10
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Fourier Cosine Transform Fc:

Fc (ω) =

√
2

π

ˆ ∞

0

f (t) cos (ωt) dt (1.47)

Fourier Transform when f (t) = e−qt:

Fs =

√
2

π
· ω

ω2 + q2
and Fc =

√
2

π
· q

ω2 + q2

1.9.2 Top-Hat Function

Denoted by Πa (t) and is defined by:

f (x) =


0, t < −a

2
1
a
, −a

2
< t < a

2

0, a
2
< t

(1.48)

Fourier Transform F (ω):

F (ω) =
1√
2π

sinc
(ωa

2

)
(1.49)

t

f(t)

−a
2

a
2

1
a

(a) Top-hat function, Πa (t)

ω

F (ω)

1√
2π

sinc
(
wa
2

)
2π
a

(b) Fourier transform of Πa (t) = sinc
(
wa
2

)
Figure 1.3: Top-hat function, Πa and its fourier transform, F (ω)

It is useful because it can be used to select any segment of any function. For example, to
select segment

(
π
2
, 3π

2

)
of function cos (t):

Ππ (t− π) =


0, t− π < −π

2
1
π
, −π

2
< t− π < π

2

0, π
2
< t− π

Ππ (t− π) =


0, t < π

2
1
π
, π

2
< t < 3π

2

0, 3π
2
< t

πΠπ (t− π) cos (t) =

{
cos (t) , π

2
< t < 3π

2

0, otherwise

11



SIF2028 Notes (24/25) Errol Tay 23054789

t

f(t)

π
2

3π
2

πΠπ (t− π) cos (t)

Figure 1.4: Top-hat function used to select segment of cos (t).

1.9.3 Dirac Delta Function

Is a unit area pulse. Often used to represent force acting for a very brief period of time.

lim
a→0

ˆ ∞

−∞
{Πa (t)}dt =

ˆ ∞

−∞
δ (t) dt = 1 (1.50)

Therefore, we accept validity of integral:ˆ ∞

−∞
f (t) δ (t− t0) dt = f (t0) (1.51)

Fourier Transform F (ω):

F (ω) =
1√
2π

(1.52)

Like the top-hat function, selects only part of f (t) over which is non-zero, namely at t = t0.

t

δ(t)
δ(t− t0)

t0

∞

(a) Dirac delta function, δ (t)

ω

F (ω)

1√
2π

1√
2π

(b) Fourier transform of δ (t) = 1√
2π

Figure 1.5: Dirac delta function, δ (t) and its fourier transform, F (ω)

1.9.4 Triangle Function

Defined by the equation:

Λa (t) =


(a+ t) /a2, −a < t < 0

(a− t) /a2, 0 < t < a

0, |t| > a

(1.53)

Fourier Transform F (ω):

F (ω) =
1√
2π

sinc2
(ω
2

)
(1.54)

12
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t

Λ0(t)

−a a

1
a

(a) Triangle function Λa (t).

ω

F (ω)

1√
2π
sinc2

(
ω
2

)1√
2π

(b) Fourier transform of Λa (t) = sinc2
(
w
2

)
Figure 1.6: Triangle function, Λa (t) and its fourier transform, F (ω)

1.9.5 Heaviside Unit Step Function

Is defined as u (t) where:

u (t) =

{
0, t < 0

1, t > 0
(1.55)

Fourier Transform F (ω):

F (ω) =
1√
2πiω

−
{
1− lim

t→∞

[
e−iωt

]}
=

1√
2π

{
πδ (ω) +

1

jω

}
(1.56)

t

f(t)

-1
1

Figure 1.7: Heaviside unit step function u (t)

1.10 Convolution

Convolution of two functions f (t) and g (t) defined as:

f (t) ∗ g (t) =
ˆ ∞

−∞
f (x) g (t− x) dx = h (t) (1.57)

where ∗ denotes convolution

1.10.1 Properties of Convolution

1. Commutativity: f ∗ g = g ∗ f

2. Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h

3. Distributivity: f ∗ (g + h) = (f ∗ g) + (f ∗ h)

13
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1.10.2 Convolution Theorem

If F (ω) and G (ω) are Fourier transforms of f (t) and g (t) respectively, then:

1. Fourier transform of the convolution of f (t) and g (t) is equal to the product of the
individual Fourier transforms :

F [f (t) ∗ g (t)] =
√
2πF (ω)G (ω) (1.58)

F−1 [F (ω)G (ω)] =
1√
2π

[f (t) ∗ g (t)] (1.59)

2. Fourier transform of the product of f (t)g (t) is equal to the convolution of the indi-
vidual Fourier transforms :

F [f (t) g (t)] =
1√
2π

F (ω) ∗ G (ω) (1.60)

F−1 [F (ω) ∗ G (ω)] =
√
2πf (t) g (t) (1.61)

They provide useful methods to find inverse transforms, especially in Laplace Transforms.

Table 1.1: Table of Transformations

Num. Fourier, f (t) Fourier Transform, F (ω)

1. f (t) =

{
1 if − a/2 < t < a/2

0 otherwise
F (ω) =

a√
2π

sinc (ωa/2)

2. f (t) =

{
1 if 0 < t < a

0 otherwise
F (ω) =

ae−iωa/2

√
2π

sinc (ωa/2)

3. Πa (t) =

{
1/a if − a/2 < t < a/2

0 otherwise
F (ω) =

1√
2π

sinc (ωa/2)

4. f (t) = u (t) F (ω) =
1√
2π

{
πδ (ω) +

1

iw

}
5. f (t) = e−at · u (t) F (ω) =

1√
2π

{
πδ (ω + a) +

1

iw

}
6. f (t) = te−at · u (t) F (ω) =

1√
2π (a+ iw)2

7. f (t) = δ (t) F (ω) =
1√
2π

14
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1.11 Miscellaneous

Table 1.2: Table of Cosine and Sine Integrals

Num. Cosine and Sine Integrals (Period, L)

1.

ˆ L

−L

cos
(nπx
L

)
dx = 0

2.

ˆ L

−L

sin
(nπx
L

)
dx = 0

3.

ˆ L

−L

cos2
(nπx
L

)
dx = L

4.

ˆ L

−L

sin2
(nπx
L

)
dx = L

5.

ˆ L

−L

cos
(mπx

L

)
cos

(nπx
L

)
dx =

{
0 if m ̸= n

L if m = n

6.

ˆ L

−L

sin
(mπx

L

)
sin

(nπx
L

)
dx =

{
0 if m ̸= n

L if m = n

7.

ˆ L

−L

cos
mπx

L
sin

(nπx
L

)
dx = 0

15
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2 Laplace Transforms

The Laplace transform (one-to-one function) is an integral that transforms real variable
function f (t) with a function F (s) as follows:

Let f (t) be a function defined over [0,∞). Then:

L{f (t)} =

ˆ ∞

t=0

f (t) e−stdt = F (s) (2.1)

where s is assumed to be +ve and large to ensure interval converges. Also, L may be
intepreted as an operator.

2.1 Existence of Laplace Transform

2.1.1 Exponential Order

A function f is said to be of exponential if exists a constant K > 0 and a ̸= 0 such that:

|f (t)| ≤ Keat, for all t ≥ t0 (2.2)

2.1.2 Existence Theorem

A Laplace transform L{f (t)} = F (s) defined by (2.1), exists for s > a if:

1. f (t) is piecewise continuous on interval 0 ≤ t ≤ t0 for any positive t0.

2. f (t) is of exponential order.

Table 2.1: Elementary Laplace Transforms

Num. f (t) L{f (t)} = F (s) Condition on s

1. a
a

s
s > 0

2. tn, n = 0, 1, 2, ...
n!

sn+1
s > 0

3. eat
1

s− a
s > a

4. sin (at)
a

s2 + a2
s > 0

5. cos (at)
s

s2 + a2
s > 0

6. sinh (at)
a

s2 − a2
s > |a|

7. cosh (at)
s

s2 − a2
s > |a|
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2.2 Properties of Laplace Transforms

2.2.1 Linearity

Laplace transform is a linear transformation which means it satisfy the following properties:

If L{f (t)} and L{g (t)} exists, and if α and β are constants, then:

L{αf (t) + βg (t)} = αL{f (t)}+ βL{g (t)} (2.3)

Notice that the transforms cannot be multiplied together. For that, we will need to use
convolution of two expressions.

2.2.2 First Shift Theorem

Used to find Laplace transforms of functions multiplied by an exponential factor.

If L{f (t)} = F (s) and a is a constant, then:

L
{
eat · f (t)

}
= F (s− a) (2.4)

2.2.3 Differentiation of a Transform

Relates operations in t domain to those in transformed s domain. It is known as differenti-
ation of a transform or sometimes known as multiplication by t property.

If L{f (t)} = F (s), then for n = 1, 2, 3, ...

L{tn · f (t)} = (−1)n
dn

dsn
[F (s)] (2.5)

2.2.4 Integration of a Transform

It is known as integration of a transform or sometimes known as division by t property.

If L{f (t)} = F (s) and lim
t→0

f(t)
t

exists, then:

L
{
f (t)

t

}
=

ˆ ∞

s

F (s) ds (2.6)

2.2.5 Laplace Transform of an Integral

If L{f (t)} = F (s), then:

L
{ˆ t

0

f (u) du

}
=
F (s)

s
(2.7)
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Table 2.2: First Shift Theorem, Differentiation & Integration of Laplace Transforms and
Laplace Transform of an Integral

Num. f (t) L{f (t)} = F (s)

1. eat · f (t) F (s− a)

2. tn · f (t) (−1)n
dn

dsn
[F (s)]

3.
f (t)

t

ˆ ∞

s

F (s) ds

4.

ˆ t

0

f (u) du
F (s)

s

2.3 Inverse Laplace Transform

If L{f (t)} = F (s), then f (t) is called inverse Laplace transform of F (s) and is written as:

L−1 {F (s)} = f (t) (2.8)

The operator L−1 is known as the operator of inverse Laplace transform. Also, L−1 ̸= 1
L .

Table 2.3: Inverse Laplace Transforms

Num. F (s) L−1 {F (s)} = f (t)

1.
a

s
a

2.
n!

sn+1
tn, n = 0, 1, 2, ...

3.
1

s− a
eat

4.
a

s2 + a2
sin (at)

5.
s

s2 + a2
cos (at)

6.
a

s2 − a2
sinh (at)

7.
s

s2 − a2
cosh (at)

18



SIF2028 Notes (24/25) Errol Tay 23054789

2.4 Properties of Inverse Laplace Transforms

2.4.1 Linearity

This property is valid for n terms.

If L−1 {F (s)} = f (t) and L−1 {G (s)} = g (t), and if α and β are constants then:

L−1 {αF (s) + βG (s)} = αL−1 {F (s)}+ βL−1 {G (s)} = αf (t) + βg (t) (2.9)

2.4.2 First Shift Property

If L−1 {F (s)} = f (t) and a is a constant, then:

L−1 {F (s− a)} = eatL−1 {F (s)} = eatf (t) (2.10)

2.4.3 Second Shift Property

If L−1 {F (s)} = f (t) and a is a constant, then:

L−1
{
e−asF (s)

}
= f (t− a)H (t− a) (2.11)

where H (t) =unit step function

2.4.4 Differentiation of a Transform

If L−1 {F (s)} = f (t), then:

L−1 {F (s)} = −1

t
L−1

{
d

ds
[F (s)]

}
(2.12)

2.4.5 Integration of a Transform

If L−1 {F (s)} = f (t), then:

L−1 {F (s)} = t · L−1

{ˆ ∞

s

F (s) ds

}
(2.13)

19



SIF2028 Notes (24/25) Errol Tay 23054789

2.5 Partial Fractions

Consider the expression of the form:
N (s)

D (s)
(2.14)

where N (s) and D (s) are polynomials in degree s and degree of D (s) > N (s).

2.5.1 General Rules for Partial Fraction

1. The degree of D (s) must be greater than the degree of N (s). If not, long division.

2. For each linear factor (s+ a) in the denominator, assume there to be a partial fraction

of the form
A

s+ a
where A is a constant.

3. For each repeated linear factor (s+ a)n in the denominator, assume there to be n
partial fractions of the form:

A1

s+ a
+

A2

(s+ a)2
+

A3

(s+ a)3
+ ...+

An

(s+ a)n

4. For each irreducible quadratic factor (s2 + ps+ q) in the denominator, assume there

to be partial fraction of the form
Ps+Q

s2 + ps+ q
where P and Q are constants.

5. For each irreducible factor (s2 + ps+ q)
n
, assume there to be n partial fractions of the

form:
P1s+Q2

s2 + ps+ q
+

P2s+Q2

(s2 + ps+ q)2
+ ...+

Pns+Qn

(s2 + ps+ q)n

2.5.2 Cover Up Rule

A shortcut method to determine the value of constants A1, A2, A3, ... . Can only be used if
the denominator is a product of linear factors.

F (s) =
s+ 17

(s− 1) (s+ 2) (s− 3)
≡ A

s− 1
+

B

s+ 2
+

C

s− 3

A = lim
s→1

s+ 17

(s+ 2) (s− 3)
= −3, B = lim

s→−2

s+ 17

(s− 1) (s− 3)
= 1

C = lim
s→3

s+ 17

(s− 1) (s+ 2)
= 2

For situations like the following, cover up rule can still be useful:

2x+ 1

(x− 1)2 (x− 2)2
=

A

x− 1
+

3

(x− 1)2
+

B

x− 2
+

5

(x− 2)2
(2.15)
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2.5.3 Useful Techniques

Situation 1

For situations of the form s
(s−a)2+q

, manipulate algebraically then apply first shift theorem:

s

(s− a)2 + 3
=

(s− a) + a

(s− a)2 + 3
=

(s− a)

(s− a)2 + 3
+

a

(s− a)2 + 3
(2.16)

Situation 2

For situations with 1
s2

in denominator, detach then apply cover up rule on the inner bracket:

4

s2 (s+ 2) (s+ 3)
=

1

s

{
4

s (s+ 2) (s+ 3)

}
(2.17)

Next, apply cover up rule on the inner bracket.

1

s

{
A

s
+

B

s+ 2
+

C

s+ 3

}
=

1

s

{
4

6
· 1
s
− 2

s+ 2
+

4

3
· 1

s+ 3

}
Then, multiply 1

s
back into the inner bracket. Further simplify any remaining fraction into

partial fractions:
2

3
· 1

s2
− 2

s (s+ 2)
+

4

3
· 1

s (s+ 3)

2.6 Convolution Theorem

For the following product, We wish to determine L−1 {F (s)G (s)}:

F (s)G (s) , with inverses: L−1 {F (s)} = f (t) and L−1 {G (s)} = g (t) (2.18)

If L−1 {F (s)} = f (t) and L−1 {G (s)} = g (t):

L−1 {F (s)G (s)} =

ˆ t

0

f (u) g (t− u) du (2.19)

Given the expression:
1

(s+ 1) (s− 2)
=

1

s+ 1
· 1

s− 2

We choose:

F (s) =
1

s+ 1
and G (s) =

1

s− 2

From which:

f (t) = e−t and g (t) = e2t

f (u) = e−u and g (t− u) = e2(t−u)

Hence:

L−1

{
1

(s+ 1) (s− 2)

}
=

ˆ t

0

e−u · e2(t−u)du =
1

3

(
e2t − e−t

)
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2.7 Solutions of DE by Laplace Transforms

Laplace transform is an effective method to solve ODE, especially nonhomogeneous equations
with input function in the form of step or delta function.

2.7.1 Transforms of Derivatives

if L{y (t)} = Y (s) , then

L{y′ (t)} = sY (s)− y (0)

L{y′′ (t)} = s2Y (s)− sy (0)− y′ (0)

L{y′′′ (t)} = s3Y (s)− s2y (0)− sy′ (0)− y′′ (0)

...

L
{
y(n) (t)

}
= snY (s)− sn−1y (0)− sn−2y′ (0)− ...− yn−1 (0) . (2.20)

2.7.2 Initial Value Problem

A) Linear DE of First Order

Given initial value problem of ODE first order:

ay′ + by = f (t) , y (0) = y0, (2.21)

where a, b and y0 are constants

Taking its Laplace transform:

aL{y′}+ bL{y} = L{f (t)} . (2.22)

Using the theorem previously:

a [sY (s)− y (0)] + bY (s) = F (s)

(as+ b)Y (s)− ay0 = F (s)

Obtain an algebraic equation in s. Thus:

Y (s) =
F (s) + ay0
as+ b

(2.23)

Finally, perform inverse Laplace transform to obtain the solution in t:

y (t) = L−1

{
Y (s) =

F (s) + ay0
as+ b

}
(2.24)
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B) Linear DE of Second Order

Given initial value problem of ODE second order:

ay′′+by + cy = f (t) , y (0) = y0 and y′ (0) = y1 (2.25)

where a, b, c, y0 and y1 are constants

Taking its Laplace transform:

aL{y′′}+ bL{y′}+ cL{y} = L{f (t)} . (2.26)

Using the theorem previously:

a
[
s2Y (s)− sy (0)− y′ (0)

]
+ b [sY (s)− y (0)] + cY (s) = F (s)(

as2 + bs+ c
)
Y (s)− (as+ b) y0 − ay1 = F (s)

Obtain an algebraic equation in s. Thus:

Y (s) =
F (s) + (as+ b) y0 + ay1

as2 + bs+ c
(2.27)

Finally, perform inverse Laplace transform to obtain the solution in t:

y (t) = L−1

{
F (s) + (as+ b) y0 + ay1

as2 + bs+ c

}
(2.28)

Table 2.4: Summary of Linear DE of First and Second Order

Step First Order Second Order

1. ay′ + by = f (t) , y (0) = y0, ay′′ + by + cy = f (t) , y (0) = y0, y
′ (0) = y1

2. Y (s) =
F (s) + ay0
as+ b

Y (s) =
F (s) + (as+ b) y0 + ay1

as2 + bs+ c

3. y (t) = L−1

{
F (s) + ay0
as+ b

}
y (t) = L−1

{
F (s) + (as+ b) y0 + ay1

as2 + bs+ c

}
4. Solution y (t) is found Solution y (t) is found

2.7.3 Boundary Value Problem

Approach is the same as for Initial Value Problem. However, since we do not have initial
values such as y (0) = 1 or y′ (0) = 2, rather we have y (2) = π/2 or y′ (5π) = 4.2. Therefore
we set:

y (0) = α, y′ (0) = β, . . . (2.29)

Then, solve the ODE as usual but using the constants defined previously:

y (t) = (α + 1) et − e2t + te2t (2.30)

Finally, substitute the boundary values into equation to determine value of constants:

y (1) = 2e = (α + 1) e⇒ α = 1. (2.31)
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2.8 Systems of Differential Equations

Simultaneous ODE involve more than one dependent variable such as x (t) and y (t).
Therefore, Laplace transform is needed for each variable. The procedure then, is to solve the
simultaneous equation for transformed variables X (s) and Y (s). Finally, invert to recover
each dependent variables x (t) and y (t).

Given the following simultaneous equations:

dx

dt
= y,

dy

dt
= −x and x (0) = 1, y (0) = 2

Let L{x (t)} = X (s) and L{y (t)} = Y (s). Taking Laplace transform of both sides:

sX (s)− x (0) = Y (s)

sY (s)− y (0) = −X (s) (2.32)

Apply initial conditions and rearranging:

sX (s)− Y (s) = 1 (i)

sY (s) +X (0) = 2 (ii)

Solve for X (s) by s× (i) + (ii) and Y (s) by s× (ii)− (i):

X (s) =
s

s2 + 1
+

2

s2 + 1
and Y (s) =

2s

s2 + 1
− 1

s2 + 1

Taking inverse Laplace transform, we obtain:

x (t) = cos (t) + 2 sin (t)

y (t) = 2 cos (t)− sin (t)

* Note: Alternatively, y (t) may also be solved by substituting x (t) into the first equation.

y (t) =
dx

dt
=

d

dt2
(x (t) = cos (t) + 2 sin (t)) = − sin (t) + 2 cos (2t) (2.33)
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3 Special Functions

3.1 Integral Functions

3.1.1 Gamma Function, Γ (x)

Defined by the integral:

Γ (x) =

ˆ ∞

0

tx−1e−tdt, convergent for x > 0 (3.1)

Properties:

1. Recurrence relation:

Γ (x+ 1) = xΓ (x) , where x = 1, 2, 3, . . .

2. In general:

Γ (x+ 1) = x!Γ (1) = x!, where Γ (1) = 1

3. Reverse recurrence relation:

Γ (x) =
Γ (x+ 1)

x

4. Negative values of x:

a. Integers: Γ (0) = ∞; Γ (−x) = ±∞

b. Fraction (x = n
2
): Γ (−x) = Γ (−x+ 1)

−x
5. Duplication formula:

Γ
(
n+ 1

2

)
=

Γ (2n)
√
π

22n−1Γ (n)

6. Γ
(
1
2

)
=

√
π = 2

ˆ ∞

0

e−u2

du

i. Stirling formula:

n! ≈
√
2πn nne−n, where n is large

ii.

ˆ ∞

0

xn · e−axdx =
Γ (n+ 1)

an+1
=

n!

an+1

iii.

ˆ ∞

0

e−ax2

dx =
1

2

√
π

a

iv.

ˆ ∞

0

xm · e−ax2

dx =
Γ
(
m+1
2

)
2a(m+1)/2
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Figure 3.1: Table of values of Γ (x)

Figure 3.2: Values and plot of y = Γ (x)
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3.1.2 Beta Function, B (m,n)

Defined by the integral:

B (m,n) =

ˆ 1

0

xm−1 (1− x)n−1 dx, convergent for m,n > 0 (3.2)

Properties:

1. Symmetry property:

B (m,n) = B (n,m)

2. Trigonometric form:

B (m,n) = 2

ˆ π/2

0

sin2m−1 (θ) cos2m−1 (θ) dθ,
(
sub x = sin2 θ

)
3. Reduction formula:

B (m,n) =
(m− 1) (n− 1)

(m+ n− 1) (m+ n− 2)
B (m− 1, n− 1)

4. In general:

B (m,n) =
(m− 1)! (n− 1)!

(m+ n− 1)!

5. B (k, 1) = B (1, k) =
1

k

6. B
(
1
2
, 1
2

)
= π

3.1.3 Relation between Gamma and Beta Functions

B (m,n) = B (m,n) =
(m− 1)! (n− 1)!

(m+ n− 1)!
=

Γ (m) Γ (n)

Γ (m+ n)
, m, n ∈ R (3.3)

Reduction Formula of Sines and Cosines

1.

ˆ π/2

0

sinn (x) dx =
n− 1

n

ˆ π/2

0

sinn−2 (x) dx, Sn =
n− 1

n
Sn−2

2.

ˆ π/2

0

cosn (x) dx =
n− 1

n

ˆ π/2

0

cosn−2 (x) dx, Cn =
n− 1

n
Cn−2

3.

ˆ π/2

0

sinm (x) cosn (x) =
m− 1

m+ n

ˆ π/2

0

sinm−2 (x) cosn (x) dx ≡ Im,n =
m− 1

m+ n
Im−2, n

4.

ˆ π/2

0

sinm (x) cosn (x) =
n− 1

m+ n

ˆ π/2

0

sinm (x) cosn−2 (x) dx ≡ Im,n =
n− 1

m+ n
Im, n−2
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3.2 Error Function

Defined as:

erf (x) =
2√
π

ˆ x

0

e−t2dt (3.4)

From the definition of Γ
(
1
2

)
, we can find the limits:

lim
x→∞

[erf (x)] =
2√
π

ˆ ∞

0

e−t2dt =
1√
2
· Γ

(
1
2

)
= 1 (3.5)

Representing the exponential function in the integral with Maclaurin series:

erf (x) =
2√
π

∞∑
n=0

(−1)n x2n+1

n! (2n+ 1)
(3.6)

Consequently, erf (x) is an odd function:

erf (−x) = − erf (x) (3.7)

−3 −2 −1 0 1 2 3

−1

0

1

x

er
f
(x
)

Error function in pgfplots erf(x) = 2√
π

´ x
0
e−t2 dt

erf (x)

Figure 3.3: Plot of error function erf (x)

3.2.1 Complementary Error Function, erfc (x)

Defined as:

erfc (x) =
2√
π

ˆ ∞

x

e−t2dt (3.8)

which is related to the Error function by relation:

erfc (x) = 1− erf (x) (3.9)
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3.2.2 Relationship between Error and Gaussian Function

Gaussian integral is defined as:

Φ (x) =
1√
2π

ˆ x

−∞
e−t2/2dt, where Φ (x) =

1√
2π

ˆ ∞

−∞
e−t2/2dt = 1 (3.10)

For positive x. Φ (x) is related to erf (x) by:

Φ (x) =
1

2
+

1

2
erf

(
x√
2

)
(3.11)

3.3 Elliptic Functions

An integral is elliptic if the integrand is a rational function of x and
√
P (x).

(where P (x) is a polynomial of degree 3 or 4)

ˆ 1

0

dx√
(1− 2x2) (4− 3x2)

(3.12)

3.3.1 Standard and Alternative Form of Elliptic Function

i) Of the First Kind

F (k, ϕ) =

ˆ ϕ

0

dθ√
1− k2 sin2 (θ)

or F (k, x) =

ˆ x

0

dt√
(1− t2) (1− k2t2)

(3.13)

where 0 < k < 1 and (0 ≤ ϕ ≤ π
2
or 0 ≤ x ≤ 1)

ii) Of the Second Kind

E (k, ϕ) =

ˆ ϕ

0

√
1− k2 sin2 (θ) dθ or E (k, x) =

ˆ x

0

√
1− k2u2

1− u2
du (3.14)

where 0 < k < 1 and (0 ≤ ϕ ≤ π
2
or 0 ≤ x ≤ 1)

3.3.2 Complete Elliptic Functions

For Equations (3.13) and (3.14): If ϕ = π
2
, the integral is said to be complete. Then:

F
(
k, π

2

)
denoted by F (k) and E

(
k, π

2

)
denoted by E (k) (3.15)

F (k) =

ˆ π
2

0

dθ√
1− k2 sin2 (θ)

and E (k) =

ˆ π
2

0

√
1− k2 sin2 (θ) dθ

29



SIF2028 Notes (24/25) Errol Tay 23054789

3.3.3 Useful Techniques

Situation 1

For integrals of the form:

I =

ˆ π
2

0

dθ√
1 + 4 sin2 θ

(3.16)

Solve by letting θ = π
2
− ψ ⇒ sin θ = cosψ and changing the limits. Then:

I =

ˆ 0

π
2

−dψ√
1 + 4 cos2 ψ

=

ˆ π
2

0

dψ√
1 + 4

[
1− sin2 ψ

] =

ˆ π
2

0

dψ√
5− 4 sin2 ψ

Situation 2

For integrals of the form:

I =

ˆ 2

0

dt√
(4− t2) (9− t2)

(3.17)

Select denominator (4− t2). Then let t = 2 sin θ ⇒ dt = 2 cos θ dθ and changing the limits:

I =

ˆ π
2

0

2 cos θ dθ√(
4− 4 sin2 θ

) (
9− 4 sin2 θ

) =

ˆ π
2

0

2 cos θ dθ

2 cos θ ·
√

9− 4 sin2 θ
=

ˆ π
2

0

dθ√
9− 4 sin2 θ
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4 Power Series and ODE

4.1 Higher Derivatives

4.1.1 Common Identities

Table 4.1: Highier Derivatives Common Identities

Num. y (x) y(n) (x)

1. xa
a!

(a− n)!
· xa−n

2. eax an · eax

3. lnx (−1)n−1 · (n− 1)!

xn

4. sin (x) sin
(
x+

nπ

2

)
5. cos (x) cos

(
x+

nπ

2

)
6. sin (ax) an · sin

(
ax+

nπ

2

)
7. cos (ax) an · cos

(
ax+

nπ

2

)
8. sinh (ax)

an

2
{[1 + (−1)n] sinh (ax) + [1− (−1)n] cosh (ax)}

9. cosh (ax)
an

2
{[1− (−1)n] sinh (ax) + [1 + (−1)n] cosh (ax)}

4.1.2 Leibnitz Theorem - nth Derivative of Product of Two Functions

Given that y = uv where u and v are functions of x, then (Pascal’s Triangle):

y(n) =
n∑

r=0

nCru
(n−r)v(r), where nCr =

n!

r! (n− r)!
(4.1)

Choices of Functions for u and v

For the product y = uv, the function taken as:

i. u ∼ nth derivative can be easily obtained.

ii. v ∼ derivatives reduce to zero after a small number of differentiation.
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4.2 Power Series Solution

Equations of the following form can only be solved by expressing it as an infinite power
series of x. We need the following two methods to obtain the infinite series.

d2y

dx2
+ P (x)

dy

dx
+Q (x) y = 0 (4.2)

4.2.1 Leibnitz - Maclaurin Method

Leibnitz Theorem

Expanding Equation 4.1:

y(n) = u(n)v + nu(n−1)v(1) +
n (n− 1)

2!
u(n−2)v(2) + ...

+
n (n− 1) ... (n− r + 1)

r!
u(n−r)v(r) + ....+ uv(n)

(4.3)

Maclaurin’s Series

For a valid solution, series obtained must converge (apply ratio test).

y = (y)0 + x (y′)0 +
x2

2!
(y′′)0 + ...+

xn

n!

(
y(n)

)
0
+ ... (4.4)

where
(
y(n)

)
0
is the value of nthderivative of y when x = 0

Guideline Express ODE as Power Series

1. Differentiate given equation n times using Leibnitz theorem.

2. Rearrange result to obtain recurrence relation (at x = 0).

3. Determine values of derivatives at x = 0 (usually) in terms of (y)0 and (y′)0.

4. Substitute in Maclaurin’s expansion for y = f (x).

5. Simplify results and apply boundary conditions.

4.2.2 Frobenius’ Method

Sometimes power series do not converge. A more general method is to assume trial
solution of the form:

y = xc
{
a0 + a1x+ a2x

2 + a3x
3 + ...+ arx

r + ...
}
, where a0 ̸= 0 (4.5)

This type of equation can be solved by method of form:

y′′ + P (x) y′ +Q (x) y = 0 (4.6)

where P (x) and Q (x) are functions of x.
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Conditions to be Satisfied

1. If functions P and Q are both finite when x = 0, it is called ordinary point .

P (0) , Q (0) ̸= ∞

2. If xP and x2Q remain finite at x = 0, then x = 0 is called regular singular point.

P ̸= 1

x2
,
1

x3
, . . . and Q ̸= 1

x3
,
1

x4
, . . .

3. However, if P and Q do not satisfy either conditions, then x = 0 is called irregular
singular point of the equation and Frobenius’ cannot be applied.

Solution of DE by Frobenius’ Method

To solve given equation, need to find coefficients a0, a1, . . . and index c in the trial solution.

1. Differentiate the trial series (Equation 4.5) as required.

y = a0x
c + a1x

c+1 + a2x
c+2 + . . .+ arx

c+r + . . .

y′ = a0cx
c−1 + a1 (c+ 1)xc + a2 (c+ 2)xc+1 + . . .+ ar (c+ r)xc+r−1 + . . .

y′′ = a0c (c− 1)xc−2 + a1c (c+ 1)xc−1 + a2 (c+ 1) (c+ 2)xc + . . .

+ ar (c+ r − 1) (c+ r)xc+r−2 + . . . (4.7)

2. Substitute the results into the given DE. For example, 2xy′′ + y′ + y=0:

y = a0x
c + a1x

c+1 + a2x
c+2 + . . .+ arx

c+r + . . .

y′ = a0cx
c−1 + a1 (c+ 1)xc + a2 (c+ 2)xc+1 + . . .+ ar (c+ r)xc+r−1 + . . .

2xy′′ = a0c (c− 1)xc−1 + 2a1c (c+ 1)xc + 2a2 (c+ 1) (c+ 2)xc+1 + . . .

+ 2ar (c+ r − 1) (c+ r)xc+r−1 + . . . (4.8)

3. Equate coefficients of corresponding powers of x on each side of the equation by adding
all three equations above. For example, given equation 2xy′′ + y′ + y = 0:

Coefficient
[
xc−1

]
: 2a0c (c− 1) + a0c = a0c (2c− 1) = 0 (RHS) (4.9)

Coefficient (general)
[
xc+r

]
: ar+1 {(c+ r + 1) (2c+ 2r + 1)}+ ar = 0 (4.10)

4.2.3 Indical Equation

Equation formed from the coefficient of lowest powers of x, from which the values of
c can be obtained. From previous example:

a0c (2c− 1) = 0 =⇒ c = 0 or c =
1

2
(4.11)
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Additional Conditions

1. If c1 and c2 differ by a quantity NOT an integer, then two independent solutions,
y = u (x) and y = v (x) are obtained. Then, general solution is y = Au+Bv.

2. If c1 and c2 differ by an integer: c2 = c1+n, (where n ∈ Z) and if one coefficient (ar)
is determined when c = c1. Then the complete solution is given by using values of c
(because, using c = c1 + n gives a series which is a simple multiple of one of the series
in the first solution).

3. If roots c = c1 and c = c1 + n of the indicial equation differ by an integer and
one coefficient (ar) becomes infinite when c = c1, the series is rewritten with a0
replaced by k (c− c1) (Putting c = c1 in the rewritten series and that of its derivative
with respect to c gives two independent solutions).

Summary

1. Assume series of the form:

y = xc
(
a0 + a1x+ a2x

2 + . . .+ arx
r + . . .

)
2. Indicial equation gives c = c1 and c = c2.

3. Case 1: c1 and c2 differ by a quantity NOT an integer.
=⇒ Substitute c = c1 and c = c2 in the series for y.

4. Case 2: c1 and c2 deffer by an integer, and a coefficient is indeterminate when c = c1.
=⇒ Substitution of c = c1 gives the complete solution.

5. Case 3: c1 and c2 (c1 < c2) differ by an integer, and a coefficient is infinite for c = c1.
=⇒ Replace a0 by k (c− c1). Then, put c = c1 in the new series for y and for ∂y

∂c
.

=⇒ In general, if c1 − c2 = n where n ∈ Z ̸= 0, the solution is of the form:

y = (1 + k lnx)xc1
{
a0 + a1x+ a2x

2 + . . .
}
+ xc2

{
b0 + b1x+ b2x

2 + . . .
}

6. Case 4: c1 and c2 are equal.
=⇒ Substitute c = c1 in the series for y and for ∂y

∂c
. Then make the substitution after

differentiating.
=⇒ In general, if c1 = c2 = c, the solution is of the form:

y = (1 + k lnx)xc
{
a0 + a1x+ a2x

2 + . . .
}
+ xc

{
b1x+ b2x

2 + . . .
}
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4.3 Bessel’s Equation

Is a 2nd order ODE that occurs frequently in STEM. Defined as :

x2y′′ + xy′ +
(
x2 − v2

)
y = 0 where v ∈ R (4.12)

Starting with y = xc {a0 + a1x+ a2x
2 + a3x

3 + . . .+ arx
r + . . .} and proceeding as before,

we obtain value of constants:
c = ±v and a1 = 0 (4.13)

The recurrence relation is:

ar =
ar−2

v2 − (c+ r)2
, for r ≥ 2 (4.14)

Table 4.2: Values of Coefficients of Bessel’s Function

Num. an Equation When c = +v

1. a1 0 0

2. a2
a0

v2 − (c+ 2)2
−a0

22 × 1! (v + 1)

3. a3 0 0

4. a4
a0[

v2 − (c+ 2)2
] [
v2 − (c+ 4)2

] a0
24 × 2! (v + 1) (v + 2)

5. a5 0 0

6. a6
a0[

v2 − (c+ 2)2
] [
v2 − (c+ 4)2

] [
v2 − (c+ 6)2

] −a0
26 × 3! (v + 1) (v + 2) (v + 3)

7. a7 0 0

8. ar In general, when r =even
(−1)r/2 a0

2r ×
(
r
2

)
! (v + 1) (v + 2) . . .

(
v + r

2

)
When c = +v, the resulting series solution:

y = u = Axv
[
1− x2

22 × 1! (v + 1)
+

x4

24 × 2! (v + 1) (v + 2)
− x6

26 × 3! (v + 1) (v + 2) (v + 3)
+ . . .

]
(4.15)

When c = −v, the resulting series solution:

y = w = Bx−v

[
1− x2

22 × 1! (v − 1)
+

x4

24 × 2! (v − 1) (v − 2)
− x6

26 × 3! (v − 1) (v − 2) (v − 3)
+ . . .

]
(4.16)
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The complete solution (arbitrary constants A and B) to the Bessel’s equation is :

y = u+ w (4.17)

4.3.1 Bessel Functions

It is convenient to present the solution in terms of Gamma Functions Γ (x), (x > 0).
Assign a0 the arbitrary value:

a0 =
1

2vΓ (v + 1)
(4.18)

We can rewrite terms in the Bessel Equation in therms of Γ (x). Consider a2 and c = v:

a2 =
a0

v2 − (c+ 2)2
=

a0
(v − c− 2) (v + c+ 2)

=
a0

−2 (2v + 2)

=
−1

22 (v + 1)
· 1

2vΓ (v + 1)
=

−1

2v+2 (1!) Γ (v + 2)

The recurrence relation is:

ar =
(−1)

r
2

2v+r
(
r
2
!
)
Γ
(
v + r

2
+ 1

) Let r=2k−−−−−→ ∴ a2k =
(−1)k

2v+2k (k!) Γ (v + k + 1)
(4.19)

where r = even and k = 1, 2, 3, . . .

Therefore, we can write the new form of series y:

y = xv
{

1

2vΓ (v + 1)
− x2

2v+2 (1!) Γ (v + 2)
+

x4

2v+4 (2!) Γ (v + 3)
+ . . .

}
(4.20)

i) Bessel Function, Not Integers (v and −v /∈ Z)

Jv (x) and J−v (x) are two independent solutions provided v /∈ Z− and v /∈ Z+ respectively.

1. In general, Bessel function of the first kind order v, Jv (x):

Jv (x) =
(x
2

)v
∞∑
k=0

(−1)k x2k

22k (k!) Γ (v + k + 1)

J−v (x) =
(x
2

)−v
∞∑
k=0

(−1)k x2k

22k (k!) Γ (k − v + 1)

 where k = 0, 1, 2, 3, . . . (4.21)

2. The complete solution is a linear combination of Jv (x) and J−v (x):

y = AJv (x) +BJ−v (x) where A,B = constants

3. Convergence of series for ∀x can be established by normal ratio test.
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ii) Bessel Function, Positive Integer (v ∈ Z+)

When v = n (integer), then Jv (x) → Jn (x) and J−v (x) → J−n (x) are NOT independent
solutions. Denoting positive +v by n, we find that:

1. Using recurrence relation of Gamma Functions, Γ (n+ k + 1) = (n+ k)!:

Jn (x) =
(x
2

)n
∞∑
k=0

(−1)k x2k

22k (k!) Γ (n+ k + 1)
=

(x
2

)n
∞∑
k=0

(−1)k x2k

22k (k!) (n+ k)!
(4.22)

2. The two solutions Jn (x) and J−n (x) are related by:

J−n (x) = (−1)n Jn (x)

3. Therefore, applying the above, the final series for Jn (x) is just:

Jn (x) =
(x
2

)n
{

1

n!
− 1

(1!) (n+ 1)!

(x
2

)2

+
1

(2!) (n+ 2)!

(x
2

)4

− 1

(3!) (n+ 3)!

(x
2

)6

+ . . .

}
(4.23)

4. The two commonly used functions:

J0 (x) =

{
1− 1

(1!)2

(x
2

)2 1

(2!)2

(x
2

)4

− 1

(3!)2

(x
2

)6

+ . . .

}
J1 (x) =

x

2

{
1− 1

(1!) (2!)

(x
2

)2

+
1

(2!) (3!)

(x
2

)4

− 1

(3!) (4!)

(x
2

)6

. . .

}
5. The complete solution is just a constant multiplied by Jn (x):

y = CJn (x) where C = constant (4.24)

Figure 4.1: Graph of Bessel Function J0 (x) and J1 (x)
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4.4 Legendre’s Equation

Another 2nd order ODE that occurs frequently in STEM. Defined as:(
1− x2

)
y′′ − 2xy′ + k (k + 1) y = 0, where k ∈ R (4.25)

Solving using Frobenius method, the indicial equation gives c = 0 and c = 1. The two
corresponding solutions are:

[c = 0] : y1 = a0

{
1− k (k + 1)

2!
x2 +

k (k − 2) (k + 1) (k + 3)

4!
x4 − . . .

}
(4.26)

[c = 1] : y2 = a1

{
x− (k − 1) (k + 2)

3!
x3 +

(k − 1) (k − 3) (k + 2) (k + 4)

5!
x5 − . . .

}
(4.27)

where a0 and a1 are arbitrary constants

The general solution is thus y = y1 + y2.

4.4.1 Legendre Polynomials

• When k ∈ Z (integer), one of the solution’s series will terminate after finite terms.

• The polynomial that is left, Pn (x) is called Legendre Polynomial.

• Constants a0 and a1 are chosen such that Pn (x) has unit value, |Pn (x)| = 1 at x = 1.

• For example, to find P2 (x):

[c = 0] : y = a0

{
1− 2 (3)

2!
x2 +

2 (2− 2) (3) (6)

4!
x4 + . . .

}
= a0

{
1− 3x2

}
When a0 = −1

2
and x = 1, the value of y = 1. Therefore:

P2 (x) = −1

2

(
1− 3x2 − 1

)

Figure 4.2: First few Legendre Polynomials, Pn (x): (a) functional form, (b) graph
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4.4.2 Rodrigue’s Formula and the Generating Function

Legendre Polynomials can be derived by using Rodrigue’s Formula:

Pn (x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
(4.28)

Generating Function for Legendre Polynomials are useful to obtain values of Pn (x).

1√
1− 2xt+ t2

=
∞∑
n=0

Pn (x) t
n, |x| ≤ 1, |t| < 1 (4.29)

1. Pn (−1) is found by considering g (−1, t). Setting x = −1, we have:

g (−1, t) =
1√

1 + 3t+ t2
≡

∞∑
n=0

Pn (−1) tn = P0 (0)+P1 (x) t+P2 (x) t
2+P3 (x) t

3+ . . .

Using binomial expansion, we can expand LHS:

1√
1 + 3t+ t2

=
1

1 + t
= 1− t+ t2 − t3 + . . .

Therefore, comparing these expansions:

Pn (−1) = (−1)n .

2. Pn (0) is found by considering g (0, t). Setting x = 0, we have:

g (0, t) =
1√

1 + t2
≡

∞∑
n=0

Pn (0) t
n = P0 (0) + P1 (0) t+ P2 (0) t

2 ++P3 (0) t
3 . . .

Using binomial expansion, we can expand the LHS:

1√
1 + t2

= 1− 1

2
t2 +

3

8
t4 − 5

16
t6 + . . .

Therefore, comparing these expansions:

P2n (0) = (−1)n
(2n− 1)!!

(2n)!!

where n!! is the double factorial:

n!! =


n (n− 2) . . . (3) 1, n > 0, odd,

n (n− 2) . . . (4) 2, n > 0, even,

1, n = 0, −1
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4.4.3 Sturm-Liouville Systems

Sturm-Liouville system is a boundary value problem that is described by DE of form:

[p (x) y′]
′
+ [q (x) + λr (x)] y = 0, for a ≤ x ≤ b and r (x) > 0 (4.30)

where the boundary conditions can be written in the form

a1y (a) + a2y
′ (a) = 0 and β1y (b) + β2y

′ (b) = 0 (4.31)

Solutions of such systems are in the form of an infinite sequence of eigenfunctions yn,
each corresponding to an eigenvalue λn, for n = 0, 1, 2, . . .

For example, consider DE:

y′′ + λy = 0, for 0 ≤ x ≤ 5
boundary−−−−−→
conditions

y (0) = 0, y (5) = 0

The boundary equations imply:

α1 · (0) + α2y
′ (0) = 0 and β1 · (0) + β2y

′ (0) = 0

∴ α2 = 0 and ∴ β2 = 0

Expand Equation 4.30 and comparing it with given DE:

p (x) y′′ + p′ (x) y′ + [q (x) + λr (x)] ≡ y′′ + λy = 0

∴ p′ (x) = 0 and ∴ q (x) = 0 and ∴ r (x) = 1

To solve y′′ + λy = 0, use auxiliary equation m2 + λ = 0, which gives us roots m = i±
√
λ.

Therefore, the general solution is:

y = A sin
√
λx+B cos

√
λx

Applying boundary conditions y (0) = 0:

y (0) = 0 = A sin (0) +B cos (0) =⇒ B = 0

Applying boundary conditions y (5) = 0:

y (5) = 0 = A sin
(
5
√
λ
)
=⇒

√
λ =

nπ

5
→ λ =

n2π2

25

There is ∞ number of eigenvalues, λ. The nth eigenvalue being denoted by λn where λn =
n2π2

25
, with each eigenvalue having its corresponding eigenvector solution, yn = An sin

nπx

5
.
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4.4.4 Orthogonality

Two functions, f (x) and g (x) defined on interval a ≤ x ≤ b are mutually orthogonal if:ˆ b

a

f (x) g (x) dx = 0 (4.32)

Meanwhile, two functions aremutually orthogonal with respect to the weight function
w (x) if there’s a third function w (x) > 0 exists such that:ˆ b

a

f (x) g (x)w (x) dx = 0 (4.33)

An important property of the solutions to Sturm-Liouville system is that all solutions
are mutually orthogonal with respect to weight function r (x).ˆ b

a

ym (x) yn (x) r (x) dx = 0, (m ̸= n) (4.34)

4.4.5 Revisited Legendre’s Equation

All Legendre Polynomials, Pn (x) are mutually orthogonal :ˆ 1

−1

Pm (x)Pn (x) dx = 0 (4.35)

Proof:
The equations (1− x2) y′′ − 2xy′ + n (n+ 1) y = 0 is Legendre’s Equation and has Legendre
Polynomials, Pn (x) as solutions:

yn = Pn (x) , where Pn (1) = 1 and Pn (−1) = (−1)n

This equation is an example of Sturm-Liouville system [p (x) y′]′+[q (x) + λr (x)] y = 0 with
boundary conditions a1y (a) + a2y

′ (a) = 0 and β1y (b) + β2y
′ (b) = 0 where:

p (x) = 1− x2 and q (x) = 0 and r (x) = 1 and α1, α2 = 1, 0 and β1, β2 = 1, 0

Consequently, Legendre Polynomials Pn (x) are mutually orthogonal when m ̸= n.

4.4.6 Polynomials as Finite Series of Legendre Polynomials

• Many DE cannot be solved analytically, so solution by power series is a powerful tool.

• Any polynomial can be written in a finite series of Legendre Polynomials, Pn (x).

• Example 1: Show that f (x) = x2 can be written as a series of Legendre Polynomials.
Assume that,

f (x) = x2 =
∞∑
n=0

anPn (x) , then

x2 = a0P0 (x) + a1P1 (x) + a2P2 (x) + . . .

= a0 (1) + a1 (x) + a2
3x2 − 1

2
+ a3

5x3 − 3x

2
+ . . .
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Since LHS is a polynomial of degree = 2, any Legendre Polynomial onRHS containing
power of x > 2 is excluded, i.e. a3 = a4 = . . . = 0. Therefore:

x2 = a0 −
a2
2

+ a1x+
3

2
a2x

2 =⇒ a2 =
2

3
, a1 = 0, a0 −

a2
2

= 0 → a0 =
1

3

Finally, we obtain an expression in terms of Legendre Polynomial, Pn (x):

x2 =
1

3
P0 (x) +

2

3
P2 (x)
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